1,743 research outputs found

    Electron-phonon interaction in the solid form of the smallest fullerene C20_{20}

    Full text link
    The electron-phonon coupling of a theoretically devised carbon phase made by assembling the smallest fullerenes C20_{20} is calculated from first principles. The structure consists of C20_{20} cages in an {\it fcc} lattice interlinked by two bridging carbon atoms in the interstitial tetrahedral sites ({\it fcc}-C22_{22}). The crystal is insulating but can be made metallic by doping with interstitial alkali atoms. In the compound NaC22_{22} the calculated coupling constant λ/N(0)\lambda/N(0) is 0.28 eV, a value much larger than in C60_{60}, as expected from the larger curvature of C20_{20}. On the basis of the McMillan's formula, the calculated λ\lambda=1.12 and a μ∗\mu^* assumed in the range 0.3-0.1 a superconducting Tc_c in the range 15-55 K is predicted.Comment: 7 page

    New insight into cataract formation -- enhanced stability through mutual attraction

    Get PDF
    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let

    The electron-phonon coupling strength at metal surfaces directly determined from the Helium atom scattering Debye-Waller factor

    Get PDF
    A new quantum-theoretical derivation of the elastic and inelastic scattering probability of He atoms from a metal surface, where the energy and momentum exchange with the phonon gas can only occur through the mediation of the surface free-electron density, shows that the Debye-Waller exponent is directly proportional to the electron-phonon mass coupling constant λ\lambda. The comparison between the values of λ\lambda extracted from existing data on the Debye-Waller factor for various metal surfaces and the λ\lambda values known from literature indicates a substantial agreement, which opens the possibility of directly extracting the electron-phonon coupling strength in quasi-2D conducting systems from the temperature or incident energy dependence of the elastic Helium atom scattering intensities.Comment: 14 pages, 2 figures, 1 tabl

    Suppression of inelastic bound state resonance effects by the dimensionality of atom-surface scattering event

    Full text link
    We develop a multidimensional coupled channel method suitable for studying the interplay of bound state resonance and phonon assisted scattering of inert gas atoms from solid surfaces in one, two and three dimensions. This enables us to get insight into the features that depend on the dimensionality of inelastic resonant processes typically encountered in low energy He atom scattering from surfaces, in general, and to elaborate on the observability of recently conjectured near threshold resonances in scattering from Einstein phonons, in particular.Comment: 2 figure

    Passage-time statistics of superradiant light pulses from Bose-Einstein condensates

    Full text link
    We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between the Kapitza Dirac and the Bragg regimes. A possible connection of the present observations to Brownian motion is also discussed.Comment: Close to the version published in J. Phys.
    • …
    corecore